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 ELECTROMAGNETIC INDUCTION 

EXERCISES 

Sections 27.2 Faraday’s Law and 27.3 Induction and Energy 

 12. INTERPRET In this problem we are asked to verify that the SI unit of the rate of change of magnetic flux is volt. 

DEVELOP We first note that the left-hand-side of Equation 27.2, / ,Bd dtε = − Φ  represents the induced emf which 

has units of volt. From the definition of magnetic flux given in Equation 27.1a, we see that it has SI units of 2T m .⋅  

EVALUATE The reasoning above shows that the units of /Bd dtΦ are 

( )( ) ( )2 2T m /s N/A m m /s N m/ A s J/C V⋅ = ⋅ = ⋅ ⋅ = =  

ASSESS Faraday’s law relates the induced emf to the change in flux. It is the rate of change of flux, and not the 

flux or the magnetic field that gives rise to an induced emf. 

 13. INTERPRET Given a constant magnetic field, we are to find the magnetic flux that passes through the given loop. 

DEVELOP  For a stationary plane loop in a uniform magnetic field, the integral for the flux in Equation 27.1a is 

just .B B Aφ = ⋅  

EVALUATE Evaluating the dot product gives 

( ) ( ) ( )2 4cos 80 mT 2.5 cm cos 30 1.4 10  Wb.BA θ π −= ° = ×  

ASSESS The SI unit of flux, 2T m ,⋅ is also called a weber (Wb). 

 14. INTERPRET This problem is about the rate of change of magnetic flux through a loop due to a changing magnetic 

field.  

DEVELOP For a stationary plane loop in a uniform magnetic field, the magnetic flux is given by Equation 27.1b, 

cos .B B A BA θΦ = ⋅ =  Note that the SI unit of flux, 2T m ,⋅  is also called a weber, Wb. The rate of change of  

magnetic flux is / / .B Bd dt tΦ = ΔΦ Δ  

EVALUATE (a) The magnetic field at the beginning 1( 0)t =  is  

( ) ( )22 4
1 1 1

1 1 40 cm 5.0 mT 6.3 10  Wb
4 4

B A d Bπ π −Φ = = = = ×  

(b) The magnetic field at 2 25 mst =  is  

( ) ( )22 3
2 2 2

1 1 40 cm 55 mT 6.9 10  Wb
4 4

B A d Bπ π −Φ = = = = ×  

(c) Since the field increases linearly, the rate of change of magnetic flux is 

3 3
2 1

2 1

6.91 10  Wb 0.628 10  Wb 0.25 V
25 ms

B Bd
dt t t t

− −Φ ΔΦ Φ − Φ × − ×= = = =
Δ −

 

From Faraday’s law, this is equal to the magnitude of the induced emf, which causes a current  

| | 0.25 V= 2.5 mA
100 

I
R
ε= =

Ω
 

in the loop.  
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(d) The direction must oppose the increase of the external field downward, hence the induced field is upward and I 

is counter clockwise when viewed from above the loop. 

ASSESS Since / ( / )B t B t AΔΦ Δ = Δ Δ  with the area of the loop kept fixed, the induced emf and hence the current 

scale linearly with / .B tΔ Δ  

 15. INTERPRET This problem involves Faraday’s law, which we can use to find the rate at which the magnetic field 

is changing given the current in the loop. 

DEVELOP The flux through a stationary loop perpendicular to a magnetic field is B BAφ = , so Faraday’s law 

(Equation 27.2) and Ohm’s law (Equation 24.5) relate this to the magnitude of the induced current:  

( )B d BA dtd dt dB dtI A
R R R R
ε −− Φ −= = = =  

EVALUATE Solving this expression for the rate of change of the magnetic field gives 

( )( )
4 2

0.32 A 12
160 T/s

240 10 m
dB IR
dt A −

Ω
= = =

×
 

ASSESS Whether the magnetic field is increasing or decreasing depends on the direction in which the current is 
circulating with respect to the magnetic field. 

 16. INTERPRET The problem asks for the number of turns the coil must have in order to produce a given emf when it 
is placed in a time-varying magnetic field, which we can find using Faraday’s law. 
DEVELOP When the coil is wrapped around the solenoid, all of the flux in the solenoid (Bsol Asol, for a long thin 

solenoid) goes through each of the coilN turns of the coil. Using Faraday’s law (Equation 27.2), the induced emf in 

the coil is  

( ) sol
coil sol sol coil sol| | Bd d dBN B A N A

dt dt dt
ε Φ= = =  

EVALUATE Substituting the values given in the problem statement, the number of turns in the coil is 

( ) ( )coil 2
sol sol

| | 15 V 199 turns
| / | 2.4 T/s 0.1 m

N
dB dt A

ε
π

= = =  

ASSESS The number of turns is proportional to the induced emf, but inversely proportional to the rate of change 
of magnetic field.  

Section 27.4 Inductance 
 17. INTERPRET We are to find the self inductance of the given solenoid. 

DEVELOP This problem is treated in Example 27.6. Apply Equation 27.4. 

EVALUATE Equation 27.4 gives 

( )( ) ( )2 27 32
0

4 10  H/m 10 2 .0 cm
3. 2 mH

50 cm
N AL
l

π πμ −×
= = = ( 

ASSESS Note that Equation 27.4 make use of the assumption that the solenoid length is much greater than its 
diameter, which holds for this problem. 

 18. INTERPRET This problem asks for the self-inductance of an inductor, given its emf and the rate of change of its 

current. 

DEVELOP The induced emf in an inductor is given by Equation 27.5: L LdI dtε = − . With Lε  and dI dt  given, 

we can use this equation to compute the self-inductance L. 
EVALUATE From Equation 27.5, we find the self-inductance to be 

40 V 0.4 H
/ 100 A/s
LL

dI dt
ε= − = =  

ASSESS Our value of self-inductance is reasonable; inductances in common electronic circuits usually range from 
micro-henrys to several henrys.  
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 19. INTERPRET We are to find the induced emf in a circuit given the rate of change of the current and the circuit’s 

inductance. 

DEVELOP Assume that the current changes uniformly from 2.0 A to zero in 1.0 ms (or consider average values). 

Then ( ) ( ) 32.0 A 1.0 ms 2.0 10 A/sdI dt I t= Δ Δ = − = − ×  and we can apply Eqution 27.5 to find the emf. 

EVALUATE The emf is 

( )( )320 2.0 10 A/s 40 kVdIL H
dt

ε = − = − × =  

ASSESS The negative sign indicates that the emf opposes the change in the current. 

 20. INTERPRET Your sister is constructing a solenoid that will work as an inductor. She asks you the number of turns it 

will need to have the desired inductance. 

DEVELOP The inductance of a solenoid was derived in Example 27.6: 2
0 ,L n Alμ=  where n is the number of turns 

per unit length, A is the cross-sectional area, and l is the length. Your sister is asking for the total number of turns: 

.N nl=  

EVALUATE Using the given values, the number of turns is 

 ( )( )
( ) ( )22 T m7

0 A

450 μH 12 cm
185

4 10 2.0 cm
LlN nl
rμ π π π⋅−

= = = =
×

 

ASSESS This seems like a reasonable number of turns for your sister to do. The units work out since 
21 H 1 T m /A.= ⋅  

 21. INTERPRET We are to find the time constant of a circuit, given its resistance and its inductance. 

DEVELOP From Equations 27.6 and 27.7, we see that the time constant is τ = L/R, which we can solve for the 

inductance given the time constant and the resistance. 

EVALUATE Inserting the given quantities gives 

( )( )2.2 ms 100 220 mH

L

L

L
R

L R

τ

τ

=

= = Ω =
 

ASSESS To verify that the units work out correctly, note that a henry is a T·m2/A and an ohm is m2·kg·s−3·A−2. 
Expressing teslas in terms of SI base units gives (kg·s−2·A−2) 

2 -3 -2 2 -2 -2s s m kg s A m kg s A T⋅ Ω = ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ =  

 22. INTERPRET This problem is about the resistance in a series RL circuit. We are given the current at a given time, 

and are asked to find the resistance of the RL circuit given its time constant and its inductance. 
DEVELOP The buildup of current in an RL circuit with a battery is given by Equation 27.7:  

( ) ( )/1 Rt LI t I e−
∞= −  

where 0/I Rε∞ =  is the final current. We are given that ( ) ( )3.1μs 0.20I t I∞= = , so we can solve for R. 

EVALUATE Solving the expression above for R and inserting the values given, one finds the resistance to be 

( ) ( )1.8 mHln 1 ln 1 0.20 130 
3.1 μs

I tLR
t I∞

⎛ ⎞
= − − = − − = Ω⎜ ⎟⎜ ⎟

⎝ ⎠
 

ASSESS We find R to be inversely proportional to t. This means that the greater the value of R, the shorter the 

time it takes for the current to increase to 20% of its final value.  

Section 27.5 Magnetic Energy 
 23. INTERPRET We are to find the energy stored in the given inductor through which flows the given current. 

DEVELOP Apply Equation 27.9.  

EVALUATE Inserting the given quantities into Equation 27.9 gives 

2 21 1
2 2 (5.0 H)(35 A) 3.1 kJU LI= = =  
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ASSESS This is the energy it would take to lift one liter of water a height h of 

( )( )2

3.1 kJ 320 m
1.0 kg 9.8 m/s

U mgh
Uh
mg

=

= = =  

 24. INTERPRET This problem is about magnetic energy stored in an inductor. Given the inductance and the energy 

stored, we are to find the current. 

DEVELOP The amount of energy stored in an inductor is given by Equation 27.9: 2 2U LI= . This equation 

allows us to determine the current I. 

EVALUATE From the equation above, we find the current to be  

2 2(50 J) 0.10 A
10 mH

UI
L

μ= = =  

ASSESS Since the energy stored in the inductor is small, we expect the current (which is proportional to U ) to 

be small as well.  

 25. INTERPRET This problem involves the energy stored in the magnetic field of an inductor. We are to find the 

energy needed to raise the current of the inductor the given amount. 

DEVELOP From Equation 27.9, the energy required to raise the current from zero to I1 = 350 mA is 2
1 1 2U LI= . 

Likewise, the energy required to raise the current from zero to I2 is 2
2 2 2U LI= . The energy required to raise the 

current from I1 to I2 is the difference,  

( )2 2
2 12

LU I IΔ = −  

EVALUATE Inserting the given quantities yields 

( ) ( ) ( )2 22 2
2 1

220 mH 800 mA 350 mA 57 mJ
2 2
LU I I ⎡ ⎤Δ = − = − =⎣ ⎦  

ASSESS The energy in the magnetic field is proportional to the current squared, analogous to kinetic energy, 
which is proportional to the velocity squared. 

 26. INTERPRET This problem is about the energy stored in the magnetic field of a solenoid. Given the solenoid 

parameters (number of turns, current, diameter), we are to find the energy stored in the magnetic field of the 

solenoid. 

DEVELOP We first note that the inductance of a solenoid is given by Equation 27.4: 2 2
0 0L n Al N A lμ μ= = . 

Equation 27.9, 2 2U LI=  can then be used to find the energy stored in the solenoid.  

EVALUATE Combining Equations 27.4 and 27.9, we find the stored energy to be  

( )( ) ( ) ( )
( )

2 2 27 22 2
2 0

4 10 N/A 500 1.5 cm/2 65 mA1 1 0.51 μJ
2 2 2 23 cm

N AIU LI
l

π πμ −×
= = = =  

ASSESS This inductance of the solenoid is about 240 μH.  The stored energy is typical for a small inductor with a 

small current.  

 27. INTERPRET This problem is an exercise in dimensional analysis. We are to show that the given expression has 

units of energy density (i.e., J/m3). 

DEVELOP The permeability constant μ0 has units of N/A2 =N·C−2·s2 (see discussion accompanying Equation 

26.7) and the magnetic field has units of N·s/(C·m) (see discussion accompanying Equation 26.1). Combine these 

factors in the indicated fashion to find the units of B2/ μ0. 

EVALUATE The units of B2/ μ0 are  

2 2

2 2 3 3

N s C N N m J
C m N s m m m

⎛ ⎞⋅ ⋅⎛ ⎞ = = =⎜ ⎟⎜ ⎟⋅ ⋅⎝ ⎠ ⎝ ⎠
 

ASSESS The factor 2 in the denominator does not affect the result. 
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 28. INTERPRET The problem concerns the energy stored in the world's largest sustained magnetic field. 

DEVELOP The energy density of a magnetic field is given in Equation 27.10: 2
0/ 2 .Bu B μ=  

EVALUATE A 45-T field stores energy in the amount of  

 ( )
( )

22
3

T m7
0 A

45 T
0.81 GJ/m

2 2 4 10B
Bu
μ π ⋅−

= = =
×

 

ASSESS This is a lot of energy stored in something we can't see or touch. To put some perspective on this, the 

energy density of gasoline is only about 40 times larger. 

 29. INTERPRET We are to find the magnetic field strength in a region with the given magnetic energy density. 

DEVELOP Apply Equation 27.10. 

EVALUATE Solving Equation 27.10 for the magnetic field strength B gives 

( )( )7 3
02 2 4 10 H/m 7.8 J/cm 4.4 TBB uμ π −= = × =  

ASSESS This result is for free space (i.e., empty space). If a material occupies the space, Equation 27.10 is not valid. 

Section 27.6 Induced Electric Fields 

 30. INTERPRET We are given the induced electric field and asked to find the rate of change of the magnetic field. 

DEVELOP The connection between the induced electric field and the rate of change of the magnetic field is given 

by the integral form of Faraday’s law (Equation 27.11): 

BdE dr
dt
Φ⋅ = −∫  

The geometry of the induced electric field from the solenoid is described in Example 27.11, where it is shown that 

Faraday’s law leads to 

( )2
22

d R B dBr E R
dt dt

π
π π= − =  

EVALUATE Solving the expression above for the rate of change of the magnetic field gives  

( )( )
( )

3
22

2 2 12 cm 45 V/m
1.1 10  T/s 1.1 T/ms

10 cm

r EdB
dt R

= = = × =  

ASSESS The magnetic field is changing at a very fast rate. Note that the sign of dB dt  and the direction of the 

induced electric field are related by Lenz’s law. 

 31. INTERPRET This problem involves a solenoid in which the current is changing, so it has a time-varying magnetic 

field and thus an electric field as well. We can use Faraday’s law to find the electric field as a function of r inside a 

solenoid. 

DEVELOP We’ll use a circular Ampérian loop, of radius r, centered inside the solenoid. The flux through this 

loop is 2 .BA r BπΦ = =  We are told that the field in the solenoid is B = bt. Faraday’s law, integrated around this 

loop, gives us  

dE dr
dt
Φ⋅ = −∫  

By symmetry, the electric field is constant around any loop of a given radius, which makes the integration easy. 

EVALUATE  

( )2 22

2

dE dr
dt
drE r bt r b
dt
rbE

π π π

Φ⋅ = −

⎡ ⎤= − = −⎣ ⎦

= −

∫
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ASSESS Just as in previous problems that use Gauss’s and Ampère’s laws, it is important to choose our symmetry 

to make things easy on ourselves. 

PROBLEMS 

 32. INTERPRET This problem involves the rate of change of magnetic field strength, given the induced current as a 

function of time. 
DEVELOP The flux through a stationary loop of area A perpendicular to a magnetic field is ,B BAΦ =  so 
Faraday’s law (Equation 27.2) and Ohm’s law (Equation 24.5) relate this to the magnitude of the induced current:  

Bd dt AdB dtI
R R R
ε Φ

= = =  

EVALUATE From the above expression, we find the rate of change of the magnetic field to be  

2dB IR bR t
dt A R

= =  

Integration yields ( ) ( ) 33B t bR A t⎡ ⎤= ⎣ ⎦  where ( )0 0B t = =  was specified. 

ASSESS Since the current increases as 2,t  we expect the magnetic field strength to increase as 3.t  

 33. INTERPRET This problem involves Faraday’s law, which we can use to find current in the loop under the given 

conditions. 
DEVELOP Apply Faraday’s law (Equation 27.2) and Ohm’s law (Equation 27.5) to the circuit to find 

( )1 1B
B z

d
d d A dBI A Bdt

R dt R dt R dtIR

ε

ε

Φ ⎫= − Φ⎪ = − = − ⋅ −⎬
⎪= ⎭

 

Inserting Bz = at2 − b gives 

( ) ( )2AI t at
R

= −  

EVALUATE (a) Inserting t = 3 s gives 

( ) ( )( )( )
2

20.15 m3 s 2.0 2.0 T / 3.0 s 0.30 A
6.0

I t s= = − = −
Ω

 

(b) Bz = 0 implies at2 = b, or t b a= ± . At this time, the current is  

( ) ( )( ) ( ) ( )( )2
2 20.15 m 2.0 2.0 T / 8.0 T 2.0 T/s 0.20 A

6.0
I t b a s= = − = −

Ω
 

ASSESS The negative sign indicates the current direction with respect to the direction of the magnetic field. If the 

x-y axes are as shown below and the z axis is out of the page, then B  is in the same direction as A  (out of the 

page). Using the right-hand rule, positive currents run counterclockwise and negative currents run clockwise 

around the loop.  

 

 34. INTERPRET This problem is about the work done by an external agent to move a loop at a constant speed across a 

region with uniform magnetic field. 
DEVELOP The loop can be treated analogously to the situation analyzed in Section 27.3, under the heading 
“Motional EMF and Lenz’s Law”; but instead of exiting the field region at constant velocity, the loop is entering. 
All quantities have the same magnitudes, except the current in the loop is CCW instead of CW, as in Fig. 27.13.  
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EVALUATE Since the applied force acts over a displacement equal to the side-length of the loop, the work done 

can be calculated directly:  

( ) 2
app appW F l IlB l Il B= ⋅ = =  

Since the induced current is 

( )1Bd dt d BlvI Blx
R R R dt R
ε Φ

= = = =  

the work applied by the external agent is 

2 3
2 2

app
Blv B l vW Il B l B
R R

⎛ ⎞= = =⎜ ⎟
⎝ ⎠

 

ASSESS Alternatively, the work can be calculated from conservation of energy: 

( ) ( )2 2 2 3
2

diss app diss 
Blv Blv l B l vP I R W P t
R R v R

= = → = = =  

 35. INTERPRET This problem is similar to Example 27.5; it involves a conducting loop rotating in a uniform, static 

magnetic field, so the change in the magnetic field flux through the loop results from the rotation. 

DEVELOP Use the result of Example 27.5, which shows that  

( )2 2 sin 2NB r f tε π π π⎡ ⎤= ⎣ ⎦  

EVALUATE The maximum emf occurs at 

( )

( ) ( )( )

2

2 2 1

2
360 μV 15 mT

2 2 5 0.050 m 10 s

NB r f

B
N r f

ε π π
ε

π π π −

=

= = =
⋅

 

ASSESS Because the maximum of the sine function is unity, we do not need to know at what time the maximum 
occurs. 

 36. INTERPRET This problem involves finding the magnetic flux through a square in a nonuniform magnetic field. 

DEVELOP Use the coordinate system sketched below. We take elements of area to be ( )0
ˆ2 ,dA x dx k=  which are 

rectangular strips parallel to the y axis. The flux through the loop is then equal to square .B B dAΦ = ∫ ⋅  

 
EVALUATE The integral gives 

( )0
32 2

020 0 0 0
02

0 00

22 162
3 3

x

B
square

xB B B xB dA x x dx
x x

⎛ ⎞
Φ = ⋅ = = =⎜ ⎟

⎝ ⎠
∫ ∫  

ASSESS The quantity 2
0 016 3B x  has units of 2T m ,⋅  which is what we expect of a magnetic flux.  

 37. INTERPRET This problem involves a magnetic field that is changing in time, so that the flux through a loop in 

this field changes. Thus, we can apply Faraday’s law to find the induced emf. 

DEVELOP To shine at full brightness, the potential drop across the bulb must be 6 V. This is equal to the induced 

emf, if we neglect the resistance of the rest of the loop circuit. From Faraday’s law (Equation 27.2),  

( )B d BAd A B
dt dt t

ε Φ Δ= − = − =
Δ
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EVALUATE (a) Inserting the given quantities gives 

( ) ( )23.0 m 2.0 T
3 s

6 V
A B

t
ε
Δ

Δ = = =  

(b) The direction of current opposes the decrease of B  into the page, and thus must act to increase B  into the 

page. From the right-hand rule, this corresponds to a clockwise current in Fig. 27.38. 

ASSESS The units of the expression work out to be units of time:  

( ) ( ) ( ) ( )22 2 -1

2 -3 -1

m kg s Am T
s

V m kg s A

⋅ ⋅
= =

⋅ ⋅ ⋅
 

 38. INTERPRET This problem involves a current induced in a rectangular loop due to a nearby time-varying current 

source. The time-varying current source creates a time-varying magnetic field, so Faraday’s law will be involved. 

DEVELOP The normal to the loop in Fig. 27.7 is taken to be in the direction of the magnetic field of the wire, or 

into the page, so the positive sense of circulation around the loop is clockwise (from the right-hand rule). Faraday’s 

and Ohm’s laws (Equations 27.2 and 26.5) give an induced current in the loop of  

Bd dt
I

R R
ε − Φ

= =  

The magnetic flux has been calculated in Example 27.2: 

0 ln
2B
Il a w

a
μ

π
+⎛ ⎞Φ = ⎜ ⎟

⎝ ⎠
 

EVALUATE Combining the above expressions gives 

( ) ( )( )( )
( )

7 2
0

4 10 N/A 6.0 cm 25 A/s 4.5 cmln ln
2 2 50 m 1.0 cm

9.0 μA

Bd dt l dI dt a wI
R R R a

πε μ
π π

−×Φ +⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟Ω⎝ ⎠ ⎝ ⎠
=

 

By Lenz’s law, the induced current is counterclockwise in the loop. 

ASSESS As the inward flux increases (because the current in the long wire is increasing), by Lenz’s law, the 

induced current must flow in the counterclockwise direction to produce an outward flux to oppose the change.  

 39. INTERPRET The solenoid current is varying in time, so the magnetic field in the solenoid varies in time and 

Faraday’s law will be involved in finding the current induced through the wire loop in the solenoid. 

DEVELOP  The magnetic field inside the solenoid is 0 ,B nIμ=  so the flux through the loop is 
21

loop 0 loop4 .B BA n D Iφ μ π= =  From Faraday’s and Ohm’s laws (Equations 27.2 and 26.5), the magnitude of the 

induced current is 

2
loop 0 loop

1 1 1
4

Bd N dII D
R R dt L R dt
ε

μ πΦ ⎛ ⎞ ⎛ ⎞= = = ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

EVALUATE (a) Inserting the given quantities gives 

( ) ( )27 2
loop

2000 1.0 kA/s4 10 N/A 0.15 m 18 mA
2.0 m 4 5.0 

I ππ − ⎛ ⎞⎛ ⎞= × =⎜ ⎟⎜ ⎟ Ω⎝ ⎠⎝ ⎠
 

(b) If the loop encloses the solenoid, then solenoid,B BAΦ =  and the induced current would increase to 

( )2
solenoid loop 1.5A A =  times the value in part (a), or 40 mA. 

ASSESS The current is greater in the outer loop because the loop encircles greater flux. 

 40. INTERPRET We're asked what rate an applied magnetic field should be changed to heat a stent inside a person's body. 

The changing magnetic field will induce an emf according to Faraday's law, and the stent's inherent resistance will 

dissipate the heat.  

DEVELOP Faraday's law says that the induced emf in the stent will be equal to the change in the magnetic flux: 

/Bd dt= − ΦE  (Equation 27.2). We won't worry about the minus sign, since we're only interested in the magnitude 

of the current generated, not its direction. If we treat the stent as a loop, the magnetic flux through it is given in 
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Equation 27.1b: cos .B BA θΦ =  The magnetic field is the only thing that is changing ( / );dB dt  the area and the 

orientation are constant. We're told the stent is oriented optimally, which means its area is perpendicular to the 

field ( )cos 1 .θ =  

EVALUATE We're given the desired power output of the circuit, which in terms of the induced emf is 2 /P R= E  

(Equation 24.8b). Solving for the rate of magnetic field change gives 

 ( )( )
( )21

2

250 mW 41 m
6.4 kT/s

4.5 mm

dB PR
dt A π

Ω
= = =

⋅
 

ASSESS This might seem surprisingly large, but remember that this is not the magnitude of the field but the rate 
that the field changes. One way to obtain the necessary emf is by turning on and off a 6.4-T field every 
millisecond, or by turning on and off a 6.4-mT field every microsecond. 

 41. INTERPRET This problem involves a time-varying magnetic field that is spatially uniform. This causes a 

changing magnetic flux through a conducting loop, so Faraday’s law will lead to an induced emf. 
DEVELOP Faraday’s and Ohm’s laws give the current in the loop: 

( )Bd dt A dB AbI
R R R dt R
ε Φ

= = − = − = −   

EVALUATE (a) Inserting the given values leads to 

( )( )2240 cm 0.35 T/s
42 mA

0.20 
I = − = −

Ω
 

A normal to the loop is parallel to the z-axis and corresponds to counterclockwise positive circulation (via the 

right-hand rule), when viewed from above. The minus sign thus indicates a clockwise circulation when viewed 

from the positive z-axis. 

ASSESS The time-varying magnetic field causes a current to pass through the conducting loop. 

 42. INTERPRET An alternator is basically an electric generator running off of a fraction of the power supplied by a 

car's engine. You need to determine the magnetic field for a new alternator design, given the desired peak voltage and 

the coil size and turning rate. The magnetic field is needed to induce an emf in the rotating coil, according to 

Faraday's law.  

DEVELOP The magnetic flux in this case is changing due to the changing orientation of the coil. As in Example 

27.5 for a generator, you can write the flux through the multi-turn coil as 

 ( )2cos cos 2B NBA NB r ftθ π πΦ = =  

where the frequency f is the number of revolutions per second.  

EVALUATE When the coil rotates, the induced emf is  

 ( ) ( )2 2 sin 2Bd NB r f ft
dt

π π πΦ= − =E  

The magnitude of the emf will vary with time, but you need the peak voltage (when the sine term is 1) to be 14 V. 

From this, you can solve for the magnetic field strength: 

 ( )
( )( ) ( )

peak
22 2 2

14 V 60 s 57 mT
2 1 min2 250 5.0 cm 1200 rpm

B
Nr fπ π

⎡ ⎤= = =⎢ ⎥⎣ ⎦

E  

ASSESS This is a reasonable magnetic field for such an application. 

 43. INTERPRET The aim here is to find the number of turns for the rectangular coil in a generator in order to produce 

an alternating emf: ( )peak sin 2 .ftπ=E E  

DEVELOP In Example 27.5, the expression for the emf from a generator was derived. The only difference in this 

case is that the coil is rectangular not circular: 

 ( ) ( )2 sin 2Bd NBlw f ft
dt

π πΦ= − =E  
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EVALUATE Solving for N, the number of turns, gives  

 ( )
( )( )( )( )

peak 6.7 kV
130

2 2 0.14 T 0.75 m 1.3 m 60 Hz
N

Blwfπ π
= = =
E  

ASSESS Notice that the alternating emf frequency is simply set by the rotation rate of the coil. 

 44. INTERPRET We have a circuit formed by the rails, a resistance, and a conducting bar. As the bar slides along the 

rails, the circuit area increases and a current is induced because the circuit encloses more flux (i.e., Faraday’s law). 

We are interested in the rate of work done by an external agent to move the conducting bar.  

DEVELOP To find the direction of the current in the loop, we note that since the area enclosed by the circuit, and the 

magnetic flux through it, are increasing, Lenz’s law requires that the induced current opposes this with an upward 

induced magnetic field. To answer part (b), we make use of the result obtained in Example 27.4, which analyzes 

the same situation. In this example, the current in the bar is found to be I R Blv Rε= = . Because this is 

perpendicular to the magnetic field, the magnetic force on the bar is magF IlB=  (to the left in Fig. 27.39). The agent 

pulling the bar at constant velocity must exert an equal force in the direction of v. 

EVALUATE (a) From the right-hand rule, the induced current must circulate counterclockwise. Take the positive 

sense of circulation around the circuit to be clockwise, so that the normal to the area is in the direction of B (i.e., 

into the page). 

(b) The rate of work done by the external agent is  

( )2Blv
P F v IlBv

R
= ⋅ = =  

ASSESS The conservation of energy requires that the work done by the agent be equal to the rate energy is 

dissipated in the resistor (we neglected the resistance of the bar and the rails), ( ) ( )2 22 .I R Blv R R Blv R= =  An 

alternative way to determine the direction of the current is to note that the force on a (hypothetical) positive charge 

carrier in the bar, ,F qv B= ×  is upward in Fig. 27.39, so current will circulate counterclockwise around the loop 

containing the bar, the resistor, and the rails (i.e., downward in the resistor. The force per unit positive charge is the 

motional emf in the bar. 

 45. INTERPRET This problem involves using Lenz’s law to find the sign of the voltage across the two rails in the 

preceding problem. 

DEVELOP As per the discussion for Problem 27.44, Lenz’s law requires the current to try to circulate 

counterclockwise to generate an upward magnetic field to compensate for the increased downward magnetic field 

enclosed by the circuit.  

EVALUATE Because current flows from the positive to the negative terminal of a battery, the positive terminal 

will be the top bar. Thus, the positive terminal of the voltmeter must be connected to the top bar in Figure 27.39. 

(b) When an ideal voltmeter replaces the resistor, no current flows (since its resistance is infinite) so no work is 

done moving the bar. 

ASSESS Note that work is done in accelerating the bar, because charge is separated in this process to charge the 
capacitor formed by the gap between the upper and lower bars. But once the bar is moving at constant velocity, n 
work is done. 

 46. INTERPRET The circuit consists of the rails, the resistance, the conducting bar, and the battery. The emf of the 

battery will cause a current to circulate in the circuit, which will create a magnetic field. Lenz’s law will tell us the 

subsequent motion of the conducting bar. 

DEVELOP To analyze the subsequent motion of the bar, we first note that the battery causes a clockwise current 

(downward in the bar) to flow around the circuit, as indicated in the sketch below. Thus, there is a magnetic force 

on the conducting bar of 

magF Il B IlB= × =  
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which, using the right-hand rule, is to the right. This force accelerates the bar in that direction. However, as in 

Example 27.4, the the motion of the bar creates an induced emf i Bd dt Blvε = − Φ = −  that opposes the battery. By 

Ohm’s law (Equation 26.5), the instantaneous current is  

( ) ( ) ( )i t Blv t
I t

R R
ε ε ε+ −

= =  

Thus, as the speed v increases, the induced current I (and the accelerating force) decreases.  

 
EVALUATE (a) The bar will accelerate to the right until it reaches a constant velocity. 

(b) When ( )Blv tε = , Fmag = 0 and Newton’s second law tells us that the bar will move with a constant velocity.  
(c) Solving the expression of part (b) for the velocity, we find that .v Blε∞ =  Although v∞  doesn’t depend on the 
resistance, the value of R does affect how rapidly v approaches .v∞ For large R, I charges slowly and v takes a long 
time to reach .v∞  

ASSESS In this problem, the equation of motion of the bar (mass m) is 

( ) ( ) 2 2Blv lB v v l BdvF ma m IlB
dt R R

ε ∞− −
= ⇒ = = =  

which can be rewritten as 

2 2dv l B dt
v v mR∞

=
−

 

For 0 0,v =  this integrates to ( ) ( )2 2ln 1 /v v l B t mR∞− = −  or ( ) ( )2 2 /1 .l B t mRv t v e−
∞= −  The time constant 

( )2mR lBτ =  depends on the resistance. 

 47. INTERPRET This problem is a continuation of Problem 27.44. We are given values for the circuit elements and 

are asked to quantitatively characterize the circuit’s response to the agent that moves the conducting bar. 
DEVELOP The situation is like that described in Example 27.4 and the solution to Problem 27.44.  

EVALUATE  (a) The current is 

( )( )( )0.50 T 0.10 m 2.0 m/s
25 mA

4.0
I R Blv Rε= = = =

Ω
 

(b) The magnetic force on the conducting bar is 

( )( )( ) 3
mag 25 mA 0.10 m 0.50 T 1.3 10  NF IlB −= = = ×  

to the left. 

(c) The power dissipated in the resistor is 

( ) ( )22 25 mA 4.0 2.5 mW.P I R= = Ω =  

(d) The agent pulling the bar must exert a force equal in magnitude to magF  and parallel to v. Therefore, it does 

work at a rate 

( )( )31.25 10  N 2.0 m/s 2.5 mWFv −= × =   

Conservation of energy requires the answers to parts (c) and (d) to be the same. 

ASSESS Note that the answer to part (d) uses the result of part (c) to three significant figures because the result of 
part (c) serves as an intermediate result in part (d). 
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 48. INTERPRET The problem involves a changing magnetic field that induces an electric field. Both fields exert a 

force on a proton.  

DEVELOP The induced electric field inside a long thin cylindrical solenoid, whose magnetic field is increasing with 

time as ˆ,B btk= (take k̂ into the page as in Fig. 27.30), can be found by modifying the argument in Example 27.11 for 

radius .r R< The magnitude of E is  

1
2 2
dB rbE r
dt

= − =  

The induced electric field circulates CCW around the direction of ,B or ˆ( /2)E bx j−= for the given point on the 

x axis ( 5 cm, 0)x y z= = = inside the solenoid (whose axis we assume is the z axis). At 0.4 s,t μ= the uniform 

magnetic field is ˆ(0.4 s) .B b kμ= The electromagnetic force on a proton with the given velocity is 

( ).F e E v B= + ×  

EVALUATE Substituting the values given, we find the net force on the proton to be  

( ) ( )

6

19

1 ˆˆ ˆ( ) (2.1 T/ms)(5.0 cm)( ) (4.8 10  m/s) (2.1 T/ms)(0.4 s)
2

ˆ ˆ ˆ ˆ1.6 10  C 52.5 4032  N/C 0.65 0.0084 fN

F e E v B e j j k

j i i j

μ

−

⎡ ⎤= + × = − + × ×⎢ ⎥⎣ ⎦
⎡ ⎤= × − + = −⎣ ⎦

 

 
ASSESS In the region ,r R< the induced electric field rises linearly with r. Since the proton is moving, the net 

force on the proton is a vector sum of electric and magnetic force (i.e., the electromagnetic force).  

 49. INTERPRET This problem involves a changing magnetic field that induces an electric field. Thus, Faraday’s law 

(Equation 27.11) applies. We can use this to find the rate at which the magnetic field changes given the electric 

field strength. In using Faraday’s law, we can make use of the line symmetry of the problem, which tells us that the 

electric field will be constant along circles concentric with the solenoid axis. 

DEVELOP The magnitude of the electric field is E = F/e. Faradays law tells us that  

22

B

B

dE dr
dt
d dB dBrE A r
dt dt dt

π π

Φ⋅ = −

Φ= − = − = −

∫
 

EVALUATE Solving for the rate of change of the magnetic field gives 

( )
( )( )

15

19

2 1.3 10 N2 2 58 T/ms
0.28 m 1.6 10 C

dB E F
dt r re

−

−

×
= = = =

×
 

ASSESS We cannot tell if the magnetic field is increasing or decreasing because we do not have information 
about the direction of the force. 

 50. INTERPRET You want to show that the total amount of charge that an induced emf causes to move is independent 

of how the magnetic field changes. 

DEVELOP The flux through a stationary loop perpendicular to a magnetic field is ,B BAΦ = so Faraday’s law 

(Equation 27.2) and Ohm’s law (Equation 24.5) relate this to the magnitude of the induced current: 
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2| | | / | | / |Bd dt A dB dt a dBI

R R R R dt
πΦ= = = =E  

Over time, this current will result in the displacement of charge equal to the integral: .Q Idt= ∫  

EVALUATE Substituting the current expression into the charge integral gives  

 ( )
2 2 2

2 1
a dB a aQ Idt dt dB B B
R dt R R

π π π= = = = −∫ ∫ ∫  

The absolute value symbols were dropped, since you don't have enough information to calculate the sign of the 

charge. But note that this expression is independent of how the field is varied, just as you expected. 

ASSESS This makes sense, since if you vary the magnetic field more slowly, the induced current will be smaller, 

but it will flow a longer time, as you still have to change the field by the given amount. Interestingly, if you varied 

the magnetic field but then returned it to its initial value, 2 1,B B=  then the net charge moved around the loop would 

be zero.  

 51. INTERPRET This problem involves a coil that is moved through a magnetic field, so Faraday’s law can be used to 

relate the changing magnetic flux through the coil to the electric field and thus to the current. 

DEVELOP Initially, the flux through the flip coil is ,B NBAφ =  but is reversed to NBA−  when the coil is rotated 

180°, so 2 .B NBAφΔ = −  The total charge that flows is av ,Q I tΔ = Δ  where Iav is the average induced current and Δt 

is the time for the rotation. Use Faraday’s law and Ohm’s law to relate the charge to the magnetic field strength. 

EVALUATE From Faraday’s and Ohm’s laws,  

av
2B t NBAI

R tR
ΔΦ Δ= − =

Δ
 

so  

2

 
2

NBAQ
R

R QB
NA

Δ =

Δ=
 

ASSESS This result agrees with that given in the problem statement. 

 52. INTERPRET We are to find the time constant of a series RL circuit, given the time it takes for the current in the 

circuit to rise to half its final value. 

DEVELOP In a series RL circuit, the current as a function of time is given by Equation 27.7: 

( ) ( )/1 Rt LI t I e−
∞= −  

where 0I Rε∞ =  is the final current. 

EVALUATE From Equation 27.7, the time constant is  

( ) ( )
7.6 s 7.6 s 11 s

ln 1 ln 1 1 2 ln 2L
L t
R I I

τ
∞

= = − = − = =
− −

 

ASSESS The time constant is inversely proportional to the resistance R. The physical meaning of the time 

constant L L Rτ =  is that significant changes in current cannot occur on time scales much shorter than .Lτ  

 53. INTERPRET This problem involves an RL circuit for which we are to find the time for which the circuit has been 

completed (i.e., switch closed). 

DEVELOP When the switch is closed, the current starts to increase, as shown in Figure 27.24. The current rise is 

given by Equation 27.7: 

( ) ( )/0 1 Rt LI t e
R
ε −= −  

which we can solve for the time t. 

EVALUATE Solving for the time t gives 
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( ) ( )( ) ( )0

1 2.1 H 1ln ln 0.76 s
1 3.3 1 3.3 9.5 A 45 V

Lt
R RI t ε

⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− Ω − Ω⎝ ⎠ ⎝ ⎠

 

ASSESS The time constant for this circuit is RL = 6.9 s, so the current in this circuit will continue to grow for 
about 21 s (about three time constants). 

 54. INTERPRET In this problem we are asked to find the inductance and the long-time behavior of a series RL circuit.  

DEVELOP In a series RL circuit, the rising current as a function of time is given by Equation 27.7: 

( )/( ) 1 Rt LI t I e−
∞= −  

where 0I Rε∞ =  is the final current. Solve this for the inductance. 

EVALUATE (a) The current is 10 mA at 30 μs [i.e. I(30 μs) = 10 mA]. Thus, the inductance is 

( ) ( )

( )
( )( )

( )( ) ( )

0 /

6 3

3 3
0

1

30 10 s 2.5 10 Ω
380 H

ln 1 ln 1 50 V 10 10  A 2.5 10

Rt LI t I t
e

I R

RtL
I t R

ε

ε

−

∞

−

−

= = −

× ×
= − = − =

⎡ ⎤ ⎡ ⎤− − × × Ω⎣ ⎦ ⎣ ⎦

 

(b) After a long time ( ),t → ∞  the exponential term in Equation 27.7 is negligible, and the current is 

0 50 V 20 mA
2.5 k

I
R
ε

∞ = = =
Ω

 

ASSESS After many time constants, there is no induced emf in the inductor and we can simply think of the 

inductor is a conducting wire connecting the different parts of the circuit. Note that 0I Rε∞ =  is what you would 

get by neglecting the inductance and using Ohm’s law. 

 55. INTERPRET This problem involves the current decay in an RL circuit. We use the equation for current decay in an 

inductor, and energy stored in an inductor, to find the time it takes to lose 90% of the energy stored in an inductor 

when the circuit becomes resistive. 

DEVELOP The energy initially stored in the inductor is 21
0 02U LI=  (Equation 27.9). The decaying current through 

an RL circuit is given by /
0 .Rt LI I e−=  (Equation 27.8). For this problem, the initial current is I0 = 2.4 kA, the 

inductance is L = 0.53 H, and the resistance is R = 21 mΩ. We want to calculate the time required to dissipate 90% 

of the initial energy. 

EVALUATE The time-dependent energy stored in the inductor is 

( ) 2 2 2 / 2 /
0 0

1 1
2 2

Rt L Rt LU t LI LI e U e− −= = =  

so the time we’re looking for is  

( )

( )

2 / 100% 90% 0.10
2 ln 0.10

ln 0.10 20 s
2

Rt Le
Rt
L

Lt
R

− = − =

− =

= − =

 

ASSESS The initial energy stored is 1.5 MJ, so the average power loss is nearly 69 kW! Note also that the initial 

current was not needed in this calculation.  

 56. INTERPRET This problem involves finding the rate of change of current in a series RL circuit at different instants. 

DEVELOP In a series RL circuit, the rising current as a function of time is given by Equation 27.7: 

( ) ( )/1 Rt LI t I e−
∞= −  

where 0I Rε∞ =  is the final current. The rate of change of current is 

/0 Rt LdI e
dt L

ε −=  

EVALUATE (a) For t = 0,  



Electromagnetic Induction  27-15 

 
© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may 

be reproduced, in any form or by any means, without permission in writing from the publisher. 

0 60 V 40 A/s
1.5 H

dI
dt L

ε= = =  

 
(b) Similarly, for t = 100 s, the rate is 

( )/ / (22 )(0.1 s)/(1.5 H)0

0

40 A/s 9.2 A/sRt L Rt LdI dIe e e
dt L dt

ε − − − Ω⎛ ⎞
= = = =⎜ ⎟

⎝ ⎠
 

ASSESS The rate of change of current decreases exponentially with time. After many time constants, the current 

is approximately equal to 0/ ,I Rε∞ =  and the rate of change goes to zero. 

 57. INTERPRET You want to limit the voltage across elevator motors when the supplied current is suddenly switched 

off. Because the motors have a high inductance, they will try to keep the same current flowing through them even 

when the circuit is opened. A resistor placed in parallel with the motor will give a safe path for this current to flow 

out. 

DEVELOP In Conceptual Example 27.1, a description is given of the behavior of a circuit with a power supply 

connected to an inductor and resistor in parallel. You can imagine that the inductor in this example is an elevator 

motor and the parallel resistor is the safety element you want to install. When the elevator is in operation, a current 

of 0 20 AI = flows through the motor. If a switch is suddenly opened, the motor's inductance will respond by 

driving the same current through the mini-circuit defined by the inductor and resistor (see Figure 27.26d). The 

voltage across the resistor, 0 ,V I R= will be equal to the voltage across the motor (inductor).  

EVALUATE (a) To limit the voltage across the motor to less than 100 V, you'll need resistors of  

 
0

100 V 5 
20 A

VR
I

= = = Ω  

(b) The current does not stay at the initial value. It decays exponentially according to Equation 27.8: /
0 .Rt LI I e−=  

To find how much energy the resistor dissipates, you can integrate the power, 2 ,P I R= over the time it will take for 

all the current to theoretically disappear (i.e., t = ∞ ). 

 ( )( )21 12 2 / 2
0 02 20 0

2.5 H 20 A 500 JRt LU Pdt I Re dt LI
∞ ∞ −Δ = = = = =∫ ∫  

ASSESS Just as you might expect, the energy dissipated by the resistor is just the energy that was initially stored in 

the inductor (Equation 27.9).  

 58. INTERPRET This problem is about the buildup and decay of current in a series RL circuit. For the first 10 s, the 

current will grow towards its steady-state value. After 10 s, the switch is opened and the current decays 

exponentially. 

DEVELOP In a series RL circuit, the rising current as a function of time is given by Equation 27.7: 

( ) ( )/1 Rt LI t I e−
∞= −  

where 0I Rε∞ =  is the final current. When the switch is thrown back to position B, the battery is removed from 

the circuit and the current decays according to Equation 27.8: 

( ) /
0

Rt LI t I e−=  

EVALUATE (a) When the current is building up from zero, Equation 27.7 gives 

( )/ (2.7  )(5 s)/(20 H)0 12 V( 5.0 s) 1 1 2.2 A
2.7 

Rt LI t e e
R
ε − − Ω⎡ ⎤= = − = − =⎣ ⎦Ω

 

(b) At t = 10 s, the current has built up to  

( ) (2.7  )(10 s)/(20 H)12 V10 s 1 3.3 A
2.7 

I t e− Ω⎡ ⎤= = − =⎣ ⎦Ω
 

This current decays when the switch is thrown back to B. Equation 27.8 (where t is the time since 10 s) gives  

( ) ( )( ) ( )/ (2.7  )(15 s 10 s) /(20 H)15 s 10 s 1 3.29 A 1.7 ARt LI t I t e e− Ω −= = = − = =  

where we have used the result from above to three significant figures because it is an intermediate result. 
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ASSESS The time constant of the circuit is ( ) ( )/ 20 H 2.7 7.4 sL L Rτ = = Ω =  so t = 10 s corresponds to only  

1.35 .Lτ  At this instant, the current is only 74% of its steady-state value ( ) ( )0 12 V 2.7 4.44 A.I Rε∞ = = Ω =   

One needs to wait at least three time constants for the current to approach .I∞   

 59. INTERPRET We're asked to find the current in an RL circuit at different time points. 

DEVELOP We are considering the short-term and long-term behavior of a circuit with an inductor, as was done in 

Conceptual Example 27.1. 

EVALUATE (a) Just after the switch is closed, the inductor current is zero. We can consider this branch of the 

circuit as being opened ( )3 0 .I =  Current will instead flow through R2, which is in series with R1 (see the figure 

below). The current I2 will be 

 0
2 1

1 2

12 V 1.0 A
4.0 8.0 

I I
R R

= = = =
+ Ω + Ω
E  

 
(b) After the currents have been flowing a long time, they reach steady values ( / 0).dI dt =  This means the voltage 

across the inductor is zero, and we can treat it like a short-circuit. Now, R2 and R3 are in parallel with each other and 

in series with R1 (see the figure below). This implies that the current I1 is 

 
( )

0
1

1 2 3 2 3

12 A 2.14 A
/( ) 4.0 8.0 2.0/ 10

I
R R R R R

= = =
+ + ⎡ ⎤+ × Ω⎣ ⎦

E  

By Kirchhoff's rules, 1 2 3,I I I= +  and 2 2 3 3.I R I R=  Solving for the current I2 gives 

 ( )3
2 1

2 3

2.0 2.14 A 0.43 A
8.0 2.0

RI I
R R

= = =
+ +

 

The current I3 makes up for the difference: 3 1 2 1.71 A.I I I= − =  

 
(c) When the switch is reopened, no current flows through the battery’s branch, 1 0,I =  so we can remove it from the 

circuit (see the figure below). As explained in Conceptual Example 27.1, the induced emf acts to keep the current 

flowing through the inductor as it was before the switch was opened, i.e., 3 1.71 AI =  from part (b). The current in R2 

will be the same as in the inductor, but it will be flowing in the opposite direction as before: 
 2 3 1.7 AI I= − = −  

 
ASSESS Notice that the value of the inductance in L was not needed, since we are only considering the short and 

long term behavior of the circuit. If we wanted to calculate the currents at some intermediate time, then we would 

need the inductance to plug into Equation 27.7 or 27.8. 

 60. INTERPRET This problem is about the magnetic energy stored in a series RL circuit as a function of time, which 

we are to deduce from the given dynamics of the circuit. 
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DEVELOP The magnetic energy stored in an inductor is given by Equation 27.9, ( ) ( )2 2U t LI t= , where the 

rising current is given by Equation 27.27.7; ( ) ( )/1 .Rt LI t I e−
∞= −  Combining the two equations, the stored 

magnetic energy as a function of time is  

( ) ( ) ( )2 22 / /1 1 1
2

Rt L Rt LU t LI e U e− −
∞ ∞= − = −  

where 2 2U LI∞ ∞=  is the steady-state value of the magnetic energy. When the stored energy is half its steady-state 

value, ( ) 1/2,UU t U∞ =  we have  

( ) ( )2/

/

1 1
2

1 1
2

U

U

U Rt L

Rt L

U t
e

U

e

−

∞

−

= = −

= −
 

EVALUATE Solving the above equation for Ut  yields  

2ln 1.28
2 1U

L Lt
R R

⎛ ⎞
= =⎜ ⎟⎜ ⎟−⎝ ⎠

 

On the other hand, the current is half its steady-state value when ( )1 / ln 2 1.0 ms .t L R= =  Dividing these results, we 

find  

( )1
1.28 1.28 1.0 ms 1.8 ms
ln 2 ln 2Ut t= = =  

ASSESS Since 1,Ut t>  the magnetic energy reaches half its steady-state value after the current has already 

surpassed half its steady-state value. In fact, the current at Ut t=  is  

( ) ( )/1 0.707
2

URt L
U

II t I e I− ∞
∞ ∞= − = =  

 61. INTERPRET This problem involves an RL circuit with a given inductance. The energy in the inductor drops by 

75% in the given time and we are to find the resistance. 

DEVELOP From Equation 27.9, U = LI2/2, we find 

( ) ( )
0

2 22
0 0 03.6 s 13.6 s

4 2 4 2 2 2

U

LI tU LI L IU t
= ⎛ ⎞ ⎛ ⎞= = = = =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

from which we deduce that I(t = 3.6 s) = I0/2. Insert this into Equation 27.8, ( ) /
0

Rt LI t I e−= , to find the resistance R.  

EVALUATE Solving Equation 27.8 for the resistance R and inserting the given quantities gives 

( ) ( ) ( ) ( ) ( )
/1/2

ln 2.0 1.0 H 3.6 s ln 2.0 190 m

Rt Le
R L t

−=
= = = Ω

 

to two significant figures.  

ASSESS The current and the resistance do not have the same time constant. Because the current is squared in the 
expression for energy, the time constant for the energy in the inductor is twice that for the current. Thus, the energy 
grows and decays at twice the rate compared to the current. 

 62. INTERPRET You need to specify the maximum resistance needed in the wires of an MRI scanner in the 

eventuality that superconductivity is lost suddenly. 

DEVELOP If so-called "quenching" occurs, the solenoid wire will suddenly acquire a resistance. But since the 

solenoid is an inductor, the current will not immediately change. It will initially be the same as it was before 

quenching, so the power in the resistor immediately after the loss of superconductivity will be 2
0 .P I R=  Since the 

inductor and the resistance are effectively in series, the current will drop according to Equation 27.8: /
0 .Rt LI I e−=  

From this we can solve for the time it will take for the power in the resistor to drop to 50 kW.  

EVALUATE (a) Right after quenching, the maximum resistance needed to keep the power dissipated below 100 

kW is 
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( )max 22

0

100 kW 30.9 m 31 m
1.8 kA

PR
I

= = = Ω = Ω  

(b) If we assume the maximum resistance from part (a), and we assume that there are no other elements in the 

circuit except the inductance and the resistance, then the power will drop to half its initial value in a time of  

 ( )1
02

ln 2 3.5 Hln / 39 s
2 30.9 m

Lt P P
R

⎛ ⎞= − = =⎜ ⎟ Ω⎝ ⎠
 

ASSESS Notice that you could put in a smaller resistance, but then it will take longer for the power to drop by half. 

This is because the resistance must dissipate all the energy that was initially stored in the inductance: 1 2
02 .U I L=  

Either you use a relatively large resistance that dissipates the energy quickly over a short time, or you use a 

relatively small resistance that dissipates the energy slowly over a long time. 

 63. INTERPRET This problem involves finding the energy density in the magnetic field of a neutron star and 

comparing that density with other sources of energy. 

DEVELOP Apply Equation 27.10,  

2

0

1
2Bu B

μ
=  

to find the energy density in the magnetic field of the neutron star. 
EVALUATE The energy density in a magnetic field of the neutron star is  

( )
( )

28
2 21 3

7
0

1.0 10  T1 3.4 10  J/m
2 2 4 10  H/mBu B

μ π −

×
= = = ×

×
 

This is about (a) 1.1 × 1011 times the energy density content of gasoline 3(44 MJ/kg 800 kg /m× =  
10 33.52 10  J/m ),× and (b) 2600 times that of pure 235 13 3 3 18 3U (8 10  J/kg 19 10  kg/m 1.52 10  J/m ).× × × = ×  

ASSESS The energy density in the magnetic field of the neutron star is very high compared to that of common 
energy sources found on Earth. 

 64. INTERPRET In this problem, we are asked to compare the magnetic energy density between a current-carrying 

loop and a solenoid of the same radius. 

DEVELOP The magnetic field at the center of the loop is ( )loop 0 2B I Rμ=  (see Equation 26.9 with x = 0 and a = 

R). On the other hand, the magnetic field inside a solenoid is solenoid 0 .B nIμ= (Equation 26.21). The energy density 

can be found by using Equation 27.10: ( )2
02Bu B μ= . 

EVALUATE Using the equations above, we find the energy density at the center of the loop to be 

22 2
loop(loop) 0 0

2
0 0

1
2 2 2 8B

B I Iu
R R

μ μ
μ μ

⎛ ⎞= = =⎜ ⎟
⎝ ⎠

 

In a long thin solenoid of the same radius,  

( )
2 2 2

2(solenoid) solenoid 0
0

0 0

1
2 2 2B
B n Iu nI μμ

μ μ
= = =  

so the ratio is  

(loop) 2
0

(solenoid) 2 2 2 2 2
0

2 1
8 4

B

B

u I
u R n I n R

μ
μ

⎛ ⎞⎛ ⎞
= =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

ASSESS As expected, the ratio is dimensionless (recall that n represents the number of turns per unit length of a 

solenoid). The result shows that the energy density inside a solenoid is greater than that at the center of a loop by a 

factor of 2 24 .n R  

 65. INTERPRET We are to find the energy per unit length within a wire that carries a given current distributed 

uniformly throughout the wire. 
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DEVELOP  Equation 26.19 ( ) ( )2
0 2B Ir Rμ π=  gives the magnetic field strength inside a wire at radius r. The 

energy density power unit length is (Equation 27.10) ( )2
02Bu B μ= . Combine these equations and integrate to 

find the energy density per unit length. 

EVALUATE Using 2dV rLdrπ= , the energy density per unit length is  

2 2 2 2 4 2
0 0 0

2 4 4
0 0 0

2
2 8 4 4 16

RR
BU U dV B I r I r IdV rdr

L L L R R
μ μ μπ

μ π π π
= = = = =∫ ∫ ∫  

ASSESS The energy density, like the energy, is proportional to the current squared. 

 66. INTERPRET In this problem we want to verify that the time integral of the power dissipated through the resistor 

in a series RL circuit is equal to the energy initially stored in the inductor.  

DEVELOP Equation 27.8, /
0( ) ,Rt LI t I e−= gives the current decaying through a resistor connected to an inductor 

carrying an initial current 0.I The instantaneous power dissipated in the resistor is 2 .RP I R=  

EVALUATE (a) Using the two equations above, the power dissipated in the resistor as a function of time is  

2 2 2 /
0

Rt L
RP I R I R e−= =  

(b) In a time interval dt, the energy dissipated is ,RdU P dt= so the total energy dissipated is  

2 / 2
2 2 / 2 20
0 0 00

0

1
( 2 / ) 2 2

Rt L
Rt L e I RLU I Re dt I R LI

R L R

∞−∞ −= = = =
−∫  

ASSESS This is precisely the energy initially stored in the inductor. The result must hold true by energy 

conservation. 

 67. INTERPRET We are to compare the ratio of the electric to magnetic fields given that they have the same energy 

density.  

DEVELOP The energy density due to the electric field is (Equation 23.7) is 21
02Eu Eε=  and that due to the 

magnetic field is (Equation 27.10) 2
0/2Bu B μ= . 

EVALUATE When these two energy densities are equal, their ratio is unity, which gives 

0 0/ 1/ .E B μ ε=  

Numerically, 7 2
0 4 10  N/Aμ π −= ×  and 9 2 2

0(1/4 ) 9 10  N m /C ,πε ≈ × ⋅  so  

( )( )9 2 2 7 2 8
0 01/ 9 10  N m /C 10  N/A 3 10  m/s,μ ε −≈ × ⋅ = ×  

which is, in fact, the speed of light (see Section 29.5). 

ASSESS The speed of light is a fundamental constant of nature that can be derived from measurements of the 
constants of electricity and magnetism. Because these latter are the same in all inertial frames of reference, the 
speed of light must also be the same in all inertial frames of reference. 

 68. INTERPRET The magnetic flux in the loop is changing due to the increase in the area exposed to the field. The 

induced current will experience a force from the magnetic field.  

DEVELOP The magnetic flux through the loop is proportional to the vertical distance y that it falls into the field 

region, .B BA BwyΦ = =  The rate of change of the flux is  

 ( )Bd d Bwy Bwv
dt dt
Φ = =  

where / .v dy dt=  

EVALUATE (a) The changing magnetic flux induces an emf in the loop: / .Bd dt= − ΦE  By Lenz's law, the 

resulting current, / ,I R= E will move in a counterclockwise direction, so as to generate a magnetic field out of the 

page and thus reduce the increase in magnetic flux. The external magnetic field will exert a force on the bottom of 

the loop: ,F Iw B= ×  which will point upwards in the opposite direction of gravity. (There will be forces also on 

the left and right sides of the loop but they will be equal and opposite to each other.) So assuming the loop is long 
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enough, it will accelerate downwards until it speed is high enough that the magnetic force cancels the gravitational 

force. With net force of zero, the loop will have reached terminal speed.  

(b) From the arguments above, the terminal speed occurs when the magnitude of the magnetic force ( )IwB  is 

equal to that of the gravitational force ( ).mg  The induced current in this case is / ,I Bwv R= so the terminal speed 

equals 

 
( )2

IR mgRv
Bw Bw

= =  

ASSESS Once the loop falls far enough that its top end enters into the magnetic field, there will be no more change 

in the magnetic flux. This will shut off the induced emf and the induced current. With no more magnetic force, the 

loop will start to accelerate again due to gravity. 

 69. INTERPRET A conductive disk is in a changing magnetic field, and we are asked to find the current density in the 

disk and the rate of power dissipation in the disk. We will use Faraday’s law and the resistance of the individual 

loops that make up the disk. 

DEVELOP We will treat the disk as a set of infinitesimal loops with radius r, thickness h, resistivity ρ, and width 

dr. The resistance of each such loop, using ,LAR ρ=  is 2 .rhdrR πρ=  The magnetic flux through each loop is the 

magnetic field dotted with the area normal, or 

2 2,B B r bt rπ πΦ = =  

The induced emf around the loop is (Faraday’s law, Equation 27.2)  

2.B
d

b r
dt

ε π
Φ

= − = −  

The current density is given by .RI
A hdrJ

ε
= =  To find the total power, we will integrate the power in each 

infinitesimal loop:  

0 .
a

dP dI P dIε ε= ⇒ = ∫  

EVALUATE (a) The current density is 

( )
2

2 2r
hdr

br brJ
Rhdr hdrπ

ε π
ρ ρ
−= = = −  

(b) The power dissipation is 
2

2
2

0

2
2 3

0 0

2 4

;
2

2 2

8

a

r
hdr

a a

br brhdrP br dI dI
R

brh b hP br dr r dr

b ha

π

ε ππ
ρ ρ

ππ
ρ ρ

π
ρ

−= − = = −

= =

=

∫

∫ ∫  

ASSESS There are several interesting aspects of this problem. First, the current density is linear with r, and is 

independent of the thickness h. This makes sense: a thicker disk would have more current, but the current density 

would be the same. Second, the power actually depends on the fourth power of disk radius a, so increasing the size 

of this disk increases the power dissipation dramatically. This phenomenon is used in metal detectors, and explains 

why large metal objects are easier for metal detectors to find than small ones. 

 70. INTERPRET We qualitatively sketch current and power in a loop as a magnet passes through the loop.  

DEVELOP As the magnet is approaching the loop, the flux through the loop is increasing to the right, which 

creates a current opposing this change in flux. By the right-hand rule, this current will be in the (negative) 

clockwise direction. Later, the magnet will have passed through the loop and will be moving away. The flux will 

be decreasing in this case, so the induced current will be in the (positive) opposite direction. The power depends on 

current squared, so it will be positive throughout the magnet's movement. 



Electromagnetic Induction  27-21 

 
© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may 

be reproduced, in any form or by any means, without permission in writing from the publisher. 

EVALUATE To sketch the current, we imagine that when the magnet is far from the loop, the flux is not changing 

very much, so the induced current should be close to zero. As the magnet approaches the loop, the field lines going 

through it are diverging, so the flux should change rapidly resulting in a large induced current. However, the field 

lines through the magnet are essentially parallel, so the flux won't be changing very much when the magnet passes 

through the loop. The induced current will drop to zero and switch direction when the magnet is centered in the 

loop. See the figure below. 

 
ASSESS The graph is symmetric because the magnet is moving at a steady rate. 

 71. INTERPRET In Problem 47, we are shown a movable bar which completes a circuit in a magnetic field. That 

problem uses Faraday’s law to find the direction of the current and the power. Here we extend the problem to find 

the speed of the bar as a function of time with a constant force pulling the bar.  

DEVELOP There are two forces on the bar: the constant applied force, F, and the magnetic force due to the 

induced current in the bar: .mF I l B IlB= × =  This current I follows from Faraday’s law and the fact that the area 

of the loop is increasing: 

 1 1 1( ) ( )Bd d d BlvI BA Blx
R R dt R dt R dt R

Φ= = − = − = − = −E  

According to Lenz's law, the current will flow counterclockwise in order to reduce the change in the magnetic flux. 

This means the magnetic force will point to the left, in the opposite direction of the applied force. Therefore, the 

total force on the bar is 

 
2 2

tot
B lF F IlB F v
R

= − = −  

EVALUATE From Newton's second law, tot / .F ma mdv dt= =  With the above equation, we get a differential 

equation for ( ) :v t  

 
2 2dv F B l v

dt m Rm
= −  

We can guess that the solution will have a form of ( ) ,Ctv t A De−= − where A, D and C are constants. Plugging this 

solution into the differential equation gives 

 ( )
2 2

Ct Ctdv F B lDCe A De
dt m Rm

− −= = − −  

When ,t → ∞ the exponential terms disappear, and we are left with 

 
2 2

2 20      F B l FRA A
m Rm B l

− = → =  

That means the factors in front of the exponential terms must sum to zero on their own: 

 
2 2 2 2

0     CtB l B lDC D e C
Rm Rm

−⎛ ⎞
− = → =⎜ ⎟

⎝ ⎠
 

Lastly, we are told that the bar starts from rest, which means .A D=  Putting all this together: 
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2 2

2 2( ) 1 expFR B lv t t
B l Rm

⎡ ⎤⎛ ⎞
= − −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
 

ASSESS Notice that there is a terminal velocity: 2 2( ) / ,v FR B l∞ =  which is the highest speed reached by the bar.  

 72. INTERPRET We are to use Kirchhoff’s laws to find the current in a circuit element. The circuit includes an 

inductor, so the equations we obtain using Kirchhoff’s laws will be differential equations. 
DEVELOP We start by drawing our loops and nodes as shown in the figure below. Node A and node B give the same 
information, so we will use only loop 1, loop 2, and node A. From node A we get 1 2 3 0.I I I− − =  From loop 1, we 
obtain 1 1 2 2 0,I R I Rε − − =  and from loop 2 we have 3

2 2 0.dI
dtI R L− =  We want to find the current I2 as a function of 

time. 

 
EVALUATE From node A: 1 2 3.I I I= +  
Substitute this result into loop 1: 

( ) 3 1
2 3 1 2 2 2

1 2

0 I RI I R I R I
R R
εε −− + − = ⇒ =

+
 

Substitute this result into loop 2: 

3 1 3
2

1 2

3 3 1 2 2 1 2
3

1 2 1 2 1 2

0

( ) ( )

I R dIR L
R R dt

dI I R R R R R I
dt R R L L R R L R R

ε

ε ε

⎛ ⎞− − =⎜ ⎟+⎝ ⎠
⎛ ⎞ ⎛ ⎞−= = −⎜ ⎟ ⎜ ⎟+ + +⎝ ⎠ ⎝ ⎠

 

We guess at a solution of the form ( )3 ,CtI t A Be= +  with initial condition ( )3 0 0I =  since the inductor acts as an 
open circuit at first.  

3 2 1 2

1 2 1 2

1 2

1 2

1 2 2

1 2 1 2

1

3
1

1

( )
( ) ( )

( )

( ) ( )

(0) 0 0

Ct CtdI R R RBCe A Be
dt L R R L R R

R R
L R R

R R RA
L R R L R R

R

I B
R

B
R

ε

ε

ε

ε

ε

⎛ ⎞
= = − +⎜ ⎟+ +⎝ ⎠

= −
+

⎛ ⎞
=⎜ ⎟+ +⎝ ⎠

=

⎛ ⎞
= ⇒ + =⎜ ⎟

⎝ ⎠

= −

 

So 

( ) ( )1 2
( )1 2

3
1

1
R R

L R R t
I t e

R
ε +−⎛ ⎞= −⎜ ⎟
⎝ ⎠

 

ASSESS The current gradually increases, with a time constant of ( )1 2 1 2R R L R R⎡ ⎤+⎣ ⎦ . 
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 73. INTERPRET We calculate the self-inductance per length of a coaxial cable, using the flux through the area 

between the two conductors. 
DEVELOP The self-inductance is defined in Equation 27.3 as / .BL I= Φ  To find the magnetic flux, we recall 
Example 26.7, where it was shown that the magnetic field lines around a single wire form concentric circles with 
magnitude 0 / 2 .B I rμ π=  With a coaxial cable, there is an outer conductor that carries the opposite current, so the 
encircled current is zero outside the cable, and by Ampère's law, the field is zero as well (recall Problem 26.71). 
Therefore, we only need to concern ourselves with the magnetic flux in between the two conductors. 
EVALUATE Since the magnetic field lines wrap around the inner conductor, we imagine the flux flowing through a 
strip of length l and width dr, at a distance r from the center of the cable. See the figure below. 

B

r

dr

b

l

a

I

I

 
Since by construction the field is normal is normal to the strip's area, the flux through it is  

 0

2B
Ild BdA dr
r

μ
π

Φ = =  

We now integrate this over the region where the field is nonzero, i.e. from the inner conductor's radius, a, to the 
outer conductor's radius, b. 

 0 0 ln
2 2

b

B B a

Il Il bd dr
r a

μ μ
π π

⎛ ⎞Φ = Φ = = ⎜ ⎟
⎝ ⎠∫ ∫  

The self-inductance per unit length is therefore 

 0 ln
2

L b
l a

μ
π

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

ASSESS We check this result by calculating the energy stored in the magnetic field of the coaxial cable. From 
Equation 27.10, the magnetic energy density is 2

0/ 2 .Bu B μ=  Integrating this over the volume of a section of the 
cable with length l gives 

 
2 22 0 0

0 0
0

1 ln
2 2 4

b l

B a

I I l bU u dV rdrd dz
r a

π μ μθ
μ π π

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫ ∫ ∫ ∫  

Comparing this to Equation 27.9, 1 2
2 ,U LI= we get the same answer for the self-inductance per unit length, / .L l  

 74. INTERPRET We determine the voltage induced across the wingtips of a plane flying through a magnetic field, 

using Faraday’s law. The wings of the plane sweep out area at a certain rate, and the resulting change in flux 

generates a voltage. The wings are an open circuit, so the induced emf will result in a buildup of charge at the 

wingtips (see Figure 27.17). 
DEVELOP The induced emf comes from the change in the magnetic flux, which will be proportional to the rate at 
which area is swept out by the wings of the plane: 

 Bd d BA Blv
dt dt
Φ= − = − = −⎡ ⎤⎣ ⎦E  

Here, l is the plane's wingspan and v is the plane's velocity. We have assumed that the plane, and the plane’s 

velocity, are both perpendicular to Earth's magnetic field. 
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EVALUATE Neglecting the sign, the induced voltage is 

 ( )( )( ) m/s
mph0.3 G 60 m 600 mph 0.447 0.48 VBlv ⎡ ⎤= = =⎣ ⎦E  

This is too small to run a portable music player, or anything else. 

ASSESS In reality, this voltage cannot be used by any device on the plane. If you hooked up wires to the wingtips, 

those wires would have the same induced voltage, and no current would flow. 

 75. INTERPRET We're asked to derive the formula for the volume flow rate in a blood vessel being probed by an 

electromagnetic flowmeter. 

DEVELOP The magnetic field from the flowmeter will deflect some of the moving charges in the blood, as 

described previously for the Hall effect. This deflection will result in an electric field across the blood vessel. 

Charges will continue to be deflected until the force from the electric field balances out the force from the 

magnetic field: ,qE qvB= where we assume that the magnetic field is perpendicular to the blood flow. The "drift" 

velocity, / ,v E B= multiplied by the cross-sectional area of the vessel, 2 ,rπ gives the volume flow rate that we are 

looking for. 

EVALUATE The flowmeter measures the voltage. If we assume the electric field is uniform, then the relationship 

between the voltage and the field is just .V Ed=  Combining this with the electromagnetic force equation above, 

we get a volume flow rate of 

 ( )
221

2

/
4

V d d VAv d
B Bd

ππ ⎡ ⎤⎡ ⎤= = =⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦
F  

ASSESS The formula indicates that a higher voltage reading is indicative of a greater flow rate. This is because a 

greater flow rate results in a larger magnetic force, which requires a larger electric field to achieve equilibrium. 

 76. INTERPRET We consider how electric power might be "stolen" using electromagnetic induction. 
DEVELOP The current in the power line will produce magnetic field lines that wrap around the wire in concentric 
circles (see Example 26.4). The magnetic flux through the rectangular wire loop, ,B B AΦ = ⋅  is changing due to 
the fact that the current in the power line is alternating: / / .Bd dt dI dtΦ ∝  This will induce an emf in the 
rectangular loop. 
EVALUATE In Figure 27.42, the magnetic field from the power line will be perpendicular to the vertically-oriented 
loop, which maximizes the magnetic flux through the loop. However, if the loop were horizontally-oriented, there 
would essentially be no more flux through it. This would result in the induced emf essentially dropping to zero. 

The answer is (d). 

ASSESS Tilting the loop horizontally would make sense if it were at the same height as the wire, in which case the 

magnetic field would be pointing in the vertical direction.  

 77. INTERPRET We consider how electric power might be "stolen" using electromagnetic induction. 
DEVELOP The magnetic field is not uniform around the wire, so doubling the area won't necessarily double the 
magnetic flux. To be precise, the magnetic field is inversely proportional to the distance from the wire: 

0 / 2 .B I rμ π=  Let's imagine the loop has length l and width a, and that the top of the wire is a distance y from the 
power line. Then, the flux through the loop is: 

 0 0 ln
2 2

y a

B y

Il dr Il y aBdA
r y

μ μ
π π

+ ⎛ ⎞+Φ = = = ⎜ ⎟
⎝ ⎠

∫ ∫  

EVALUATE If the loop doubles in size by extending a distance a towards the wire, the flux will increase by 

 ( ) ( )
( )

( )
( )

ln ln ln 1 /
1

ln 1 /ln

y a y
y y aB

y aB
y

a y
a y

+
−

+

+ −′Φ = = −
Φ +

 

If we assume ,a y then we can use the approximation ( )ln 1 ,x x+ ≈ in which case / 2.B B′Φ Φ ≈  However, if a is 
nearly as big as y, then / .B B′Φ Φ → ∞  Therefore, the flux increases by some factor greater than 2. Since the 
induced emf is directly related to the flux: / ,Bd dt= − ΦE it will increase by the same factor. 

The answer is (c). 



Electromagnetic Induction  27-25 

 
© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may 

be reproduced, in any form or by any means, without permission in writing from the publisher. 

ASSESS The magnetic field is greater near the wire ( )1/ ,B r∝ so the closer a farmer can place the loop to the 

wire, the more power he will be able to siphon off. 

 78. INTERPRET We consider how electric power might be "stolen" using electromagnetic induction. 

DEVELOP The current in the power line is alternating at a given frequency: ( )0 sin 2 .I I ftπ=  This causes the 

magnetic field to vary, which induces an emf in the loop. Using the geometry from the previous problem, we have  

 ( ) ( ) ( )0 0
0ln ln 2 cos 2

2 2
B y a y a

y y

d d Il l I f ft
dt dt

μ μ π π
π π

+ +Φ ⎡ ⎤ ⎡ ⎤= − = =⎢ ⎥ ⎣ ⎦⎣ ⎦
E  

EVALUATE Since ,f∝E the induced emf in Europe with 50 Hzf =  will be slightly less than in the U.S., where 

60 Hz.f =  

The answer is (b). 

ASSESS The relationship f∝E makes sense. The higher the frequency in the current, the faster the magnetic field 

is changing and the greater the induced emf. Likewise, if the frequency goes to zero, the current and the magnetic 

field become static, and no emf is induced.  

 79. INTERPRET We consider how electric power might be "stolen" using electromagnetic induction. 

DEVELOP You might think that power lines are always generating time-varying magnetic fields and the induced 

emfs that go with them, so the power company won't notice if a farmer uses some of this energy that is just being 

"lost" anyway. But in fact this is wrong. The magnetic field energy around a wire is not radiated away but only 

temporarily stored and then later given back to the power lines. During each cycle of the AC current, the magnetic 

fields will decrease in strength, thus inducing an emf back into the power line that helps to drive current in the next 

part of the cycle.   

EVALUATE By the above logic, if the farmer's loop had no resistance, then current would slosh back and forth in 

the loop, but no energy would be expended. However, as soon as the farmer puts a load in the loop circuit (like a 

light bulb, for instance), some of the magnetic field energy is used to do work, and therefore less energy will cycle 

back from the field into the power line. As a result, more fuel must be consumed at the power plant supplying the 

line. 

The answer is (a). 

ASSESS Another way to think about this is that the loop and the wire have a mutual inductance, L. When there's 

no resistance, the voltage across this inductor is just: / .L LdI dt=E  Since this voltage is 90° out of phase with the 

current, the total energy lost over a full cycle is zero: 

 ( ) ( )sin 2 cos 2 0E Pdt I dt ft ft dtπ π= = ∝ =∫ ∫ ∫E  

But as soon as a resistor is added to the loop, the voltage and current will no longer be out of phase, and the energy 

lost over a full cycle will be non-zero.  






